METODE K-MEANS UNTUK PENGELOMPOKAN MASYARAKAT MISKIN DENGAN MENGGUNAKAN JARAK KEDEKATAN MANHATTAN CITY DAN EUCLIDEAN (STUDI KASUS KOTA BINJAI)
Abstrak
The occurrence of poverty in the community is caused by the inability of the family head economically to meet the primary needs of family members, namely clothing, food, shelter, health, and education needs. The poor are almost present in every country, city, and region, this becomes a common problem. The current poverty data obtained from the Binjai City Central Bureau of Statistics is from 2012, and the number of poor people has increased in 2016 by 17,800 people with a poverty line (Rp. /Cap/month) of Rp. 343,078 and the latest data obtained in 2017 were 18,230 people with Poverty Lines (Rp. / Kap / Bulan) Rp. 371,387. In the database of the Binjai City Central Bureau of Statistics there are very diverse data on the poor, with this data, researchers try to explore data from the poor city of Binjai to obtain new information by grouping poverty data using the k-means clustering data mining method using distance the closeness of Manhattan City and Euclidean, so that groups of variables that are very influential in the community of poverty can be identified. The observed variables such as the level of education of the household head, education level of housewives, employment, number of family members, and other observed variables affect poverty. And the results of the k-means method for grouping poor people using proximity to Manhattan city and euclidean that can provide additional information in optimizing poverty alleviation in the city of Binjai.
Referensi
BINJAI, P. (2017) Jumlah Penduduk Miskin Menurut Kabupaten/Kota, 2016-2017.
Haidar Mirza, A., Ependi, U. and Panjaitan, F. (2016) ‘REKAYASA PERANGKAT LUNAK INFORMASI KEMISKINAN’, Jurnal Informatika. doi: 10.26555/jifo.v10i1.a3351.
Kameshwaran, K. and Malarvizhi, K. (2014) Survey on Clustering Data Mining Techniques in Data Mining. Available at: people.revoledu.com%5Ckardi%5C tutorial%5CkMean%5C (Accessed: 10 August 2018).
MacQueen, J. (1967) ‘Some Methods for classification and Analysis of Multivariate Observations’, in 5th Berkeley Symposium on Mathematical Statistics and Probability 1967. doi: citeulike-article-id:6083430.
Pardede, A. M. H. (2012) ‘ANALISIS PENGELOMPOKKAN PERFORMANCE DOSEN DENGAN METODE CLUSTERING PADA STMIK KAPUTAMA BINJAI’, Jurnal Kaputama, 5(2), pp. 41–59.
Redjeki, S. et al. (2014) ‘Perancangan Sistem Identifikasi dan Pemetaan Potensi Kemiskinan untuk Optimalisasi Program Kemiskinan’, Jurnal Sistem Informasi (JSI).
Ulfah, A. N. and ‘Uyun, S. (2015) ‘Analisis Kinerja Algoritma Fuzzy C-Means dan K-Means pada Data Kemiskinan’, JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Penulis yang menerbitkan jurnal ini menyetujui persyaratan berikut:
- Penulis memiliki hak cipta dan memberikan hak untuk publikasi pertama jurnal dengan karya yang secara simultan dilisensikan di bawah Creative Commons Attribution License yang memungkinkan orang lain untuk berbagi karya dengan pengakuan kepengarangan karya dan publikasi awal dalam jurnal ini.
- Penulis dapat membuat perjanjian kontrak tambahan yang terpisah untuk distribusi non-eksklusif versi jurnal yang diterbitkan dari karya tersebut (misalnya, mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan atas publikasi awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk memposting karya mereka secara online (misalnya, dalam repositori institusional atau di situs web mereka) sebelum dan selama proses pengajuan, karena dapat menyebabkan pertukaran yang produktif, serta kutipan yang lebih awal dan lebih besar dari karya yang diterbitkan (Lihat Pengaruh Akses Terbuka).