Analysis of Accessibility of Health Facilities in Pekanbaru City, Indonesia

Authors

  • Eggy Arya Giofandi IPB University
  • Amira Novalinda Institut Teknologi Bandung
  • Dhanu Sekarjati Amcolabora Institute
  • Muh. Anugrah Pratama IPB University
  • Cipta Estri Sekarrini Universitas Negeri Malang

DOI:

https://doi.org/10.19166/isd.v8i1.581

Keywords:

health facilities; network analysys; Pekanbaru City, health facilities, network analysis, Pekanbaru City

Abstract

Health services are one of the most important facilities and help improve the quality of life and social welfare of modern society. Recent advances in the field of health geography have greatly enhanced our understanding of the role that geography of health care distribution plays in the maintenance of population health. This study presents a two-stage methodology for evaluating the location of existing health facilities in Pekanbaru City and estimating the area of buildings that are not covered by health facilities. The results obtained during the study resulted in the finding that several facilities were close together so that the measurement results overlapped to form a wedge, while the estimated built-up land that was not covered by health facilities was 3,259 hectares. This condition is expected to be able to develop health facilities that will be useful in settlements on the outskirts of the city, this hopefully can be one of the initial conditions to determine the development of health locations in the next planning.

Author Biographies

Eggy Arya Giofandi, IPB University

Program Pascasarjana Ilmu Perencanaan Wilayah

Amira Novalinda, Institut Teknologi Bandung

Program Pascasarjana Ilmu Matematika

Muh. Anugrah Pratama, IPB University

Program Pascasarjana Ilmu Perencanaan Wilayah

Cipta Estri Sekarrini, Universitas Negeri Malang

Program Doktor Ilmu Pendidikan Geografi

References

[1] L. Palk, J. T. Okano, L. Dullie, and S. Blower, “Travel time to health-care facilities, mode of transportation, and HIV elimination in Malawi: a geospatial modelling analysis,” Lancet Glob. Heal., vol. 8, no. 12, pp. e1555–e1564, 2020, doi: 10.1016/S2214-109X(20)30351-X.

[2] M. Tanou, T. Kishida, and Y. Kamiya, “The effects of geographical accessibility to health facilities on antenatal care and delivery services utilization in Benin: a cross-sectional study,” Reprod. Health, vol. 18, no. 1, pp. 1–11, 2021, doi: 10.1186/s12978-021-01249-x.

[3] G. Ashiagbor, R. Ofori-Asenso, E. K. Forkuo, and S. Agyei-Frimpong, “Measures of geographic accessibility to health care in the Ashanti Region of Ghana,” Sci. African, vol. 9, p. e00453, 2020, doi: 10.1016/j.sciaf.2020.e00453.

[4] S. Doi, H. Ide, S. Ogawa, K. Takabayashi, S. Fujita, and S. Koike, “Probabilistic model to analyze patient accessibility to medical facilities using geographic information systems,” Procedia Comput. Sci., vol. 60, no. 1, pp. 1631–1639, 2015, doi: 10.1016/j.procs.2015.08.273.

[5] D. E. Del Conte, A. Locascio, J. Amoruso, and M. L. McNamara, “Modeling multimodal access to primary care in an urban environment,” Transp. Res. Interdiscip. Perspect., vol. 13, p. 100550, 2022, doi: 10.1016/j.trip.2022.100550.

[6] U. Huerta Munoz and C. Källestål, “Geographical accessibility and spatial coverage modeling of the primary health care network in the Western Province of Rwanda,” Int. J. Health Geogr., vol. 11, pp. 1–11, 2012, doi: 10.1186/1476-072X-11-40.

[7] A. Ibrahim Ramzi and M. Abdl-Latif El-Bedawi, “Towards integration of remote sensing and GIS to manage primary health care centers,” Appl. Comput. Informatics, vol. 15, no. 2, pp. 109–113, 2019, doi: 10.1016/j.aci.2017.12.001.

[8] R. S. Rekha, S. Wajid, N. Radhakrishnan, and S. Mathew, “Accessibility Analysis of Health care facility using Geospatial Techniques,” Transp. Res. Procedia, vol. 27, pp. 1163–1170, 2017, doi: 10.1016/j.trpro.2017.12.078.

[9] H. E. Jenkins et al., “Geographic accessibility to health facilities predicts uptake of community-based tuberculosis screening in an urban setting,” Int. J. Infect. Dis., vol. 120, pp. 125–131, 2022, doi: 10.1016/j.ijid.2022.04.031.

[10] P. Kumar and D. Kumar, “Network Analysis using GIS Techniques: A Case of Chandigarh City,” Int. J. Sci. Res., vol. 5, no. 2, pp. 409–411, 2016, doi: 10.21275/v5i2.nov161143.

[11] I. M. Harjanti and S. Aulianingtyas, “Identifikasi Jangkauan Pelayanan Fasilitas Publik di Kecamatan Jumo, Kabupaten Temanggung,” Bumiphala J. Pengambangan Drh., vol. 1, no. 1, pp. 36–44, 2020.

[12] M. Luqman and S. U. Khan, “Geospatial application to assess the accessibility to the health facilities in Egypt,” Egypt. J. Remote Sens. Sp. Sci., vol. 24, no. 3, pp. 699–705, 2021, doi: 10.1016/j.ejrs.2021.02.005.

[13] E. A. Giofandi and D. Sekarjati, “Persebaran Fenomena Suhu Tinggi melalui Kerapatan Vegetasi dan Pertumbuhan Bangunan serta Distribusi Suhu Permukaan,” J. Geogr. Media Inf. Pengemb. dan Profesi Kegeografian, vol. 17, no. 2, pp. 56–62, 2020, doi: 10.15294/jg.v17i2.24486.

[14] BPS, “Hasil Sensus Penduduk 2020 Kota Pekanbaru,” 2021.

[15] MPPW, Pedoman Standar Pelayanan Minimal Pedoman Penentuan Standar Pelayanan Minimal Bidang Penataan Ruang , Perumahan Dan Permukiman Dan Pekerjaan Umum (Keputusan Menteri Permukiman dan Prasarana Wilayah No 534/KPTS/M/2001), no. 534. 2001.

[16] A. A. El Karim and M. M. Awawdeh, “Integrating GIS accessibility and location-allocation models with multicriteria decision analysis for evaluating quality of life in Buraidah city, KSA,” Sustain., vol. 12, no. 4, 2020, doi: 10.3390/su12041412.

[17] E. A. Giofandi and I. Umar, “Analisis Pola Persebaran Kejadian Demam Berdarah di Kota Pekanbaru,” J. Kependud. dan Pembang. Lingkung., vol. 2, no. 2, pp. 49–55, 2021.

[18] O. Kotavaara, A. Nivala, T. Lankila, T. Huotari, E. Delmelle, and H. Antikainen, “Geographical accessibility to primary health care in Finland – Grid-based multimodal assessment,” Appl. Geogr., vol. 136, no. February, p. 102583, 2021, doi: 10.1016/j.apgeog.2021.102583.

Published

2023-02-14