Perbandingan Performa Bagging dan AdaBoost untuk Klasifikasi Data Multi-Class
DOI:
https://doi.org/10.19166/isd.v7i2.547Keywords:
Ensemble Learning, Bagging, Boosting, AdaBoost, multi-class classificationAbstract
One technique to improve the performance of Machine Learning algorithms is to use Ensemble Learning. The idea of ​​this technique combines several Machine Learning algorithms or commonly referred to as base learners. The purpose of this study is to compare the performance of the two Ensemble Learning algorithms, namely the Bootstrap Aggregating (Bagging) method and the Adaptive Boosting (AdaBoost) method. This study uses eleven datasets with multi-class classifications that are independent of the characteristics (data proportion, number of data, and problems) and the number of different classes of target variables. The results showed that the accuracy and F1 model formed by the Bagging method tended to show better value performance than that of the AdaBoost method on the evaluation metric with an average evaluation value of 72.21% and 61% for Bagging and 66.25% and 53, respectively. 7% for AdaBoost. However, the results of hypothesis testing show that it is not significant enough. In addition, the length of computation time to form the Bagging model and the AdaBoost model is not different
References
[2] H. Jiang, H. Bin, Z. Liu, G. Wang, L. Zhang, X. Li, and H. Kang, "Detecting depression using an ensemble logistic regression model based on multiple speech features", Computational and Mathematical Methods in Medicine, vol. 2018, pp. 1–9, 2018. Available: https://doi.org/10.1155/2018/6508319.
[3] Z. Zhou, Ensemble Methods: Foundations and Algorithms, Chapman and Hall/CRC, 2019.
[4] J. Han, J. Pei, and M. Kamber, Data Mining: Concepts and Techniques, Elsevier, 2011.
[5] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., "Scikit-learn: Machine learning in python", Journal of Machine Learning Research, vol. 12, pp. 2825–2830, Oct. 2011.
[6] J. Mohajon, "Confusion matrix for your multi-class machine learning model", Towards Data Science, 2020.
[7] Y. Wu, Y. Ke, Z. Chen, S. Liang, H. Zhao, and H. Hong, "Application of alternating decision tree with adaboost and bagging ensembles for landslide susceptibility mapping", Catena, vol. 187, pp. 104396, 2020. Available: https://doi.org/10.1016/j.catena.2019.104396.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Journal Information System Development (ISD)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Penulis yang menerbitkan jurnal ini menyetujui persyaratan berikut:
- Penulis memiliki hak cipta dan memberikan hak untuk publikasi pertama jurnal dengan karya yang secara simultan dilisensikan di bawah Creative Commons Attribution License yang memungkinkan orang lain untuk berbagi karya dengan pengakuan kepengarangan karya dan publikasi awal dalam jurnal ini.
- Penulis dapat membuat perjanjian kontrak tambahan yang terpisah untuk distribusi non-eksklusif versi jurnal yang diterbitkan dari karya tersebut (misalnya, mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan atas publikasi awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk memposting karya mereka secara online (misalnya, dalam repositori institusional atau di situs web mereka) sebelum dan selama proses pengajuan, karena dapat menyebabkan pertukaran yang produktif, serta kutipan yang lebih awal dan lebih besar dari karya yang diterbitkan (Lihat Pengaruh Akses Terbuka).