Perbandingan Data Mining Mengidentifikasi Pola Keterkaitan Variabel Kecelakaan Lalu Lintas Di Polresta Kota Medan

Authors

  • Rusmin Saragih Sekolah Tinggi Manajemen dan Informatika SMTIK Kaputama Binjai Jl. VeteranNo. 4A – 9A, Binjai, Sumatera Utara
  • Juliana Naftali Sitompul Sekolah Tinggi Manajemen dan Informatika SMTIK Kaputama Binjai Jl. VeteranNo. 4A – 9A, Binjai, Sumatera UtaraAnalisis

Abstract

This research was conducted to analyze the results of data mining processing on a priori method and the method of k-means clustering in analyzing the comparison of the two methods to factors related to the incidence of traffic accidents that occurred in the POLRESTA Medan area. Analysis of the pattern of the causes of traffic accidents conducted in this study using Apriori data mining methods and k-means clustering. Apriori method is a data mining method that produces association patterns or linkages between variables or itemset based on frequent or frequent itemset. While the k-means clustering method is a method that groups data into different groups so that data with certain patterns will form their respective groups. By using a priori and k-means clustering, a comparative analysis can be obtained between the two methods. This research was carried out by collecting data on traffic accidents obtained from POLRESTA Medan followed by the development of a data mining software that implements the Apriori method and k-means clustering to produce the association and clustering patterns contained in the accident data. The results of the comparison between the two methods can then be information and references to the performance of the two methods in processing traffic accident data in POLRESTA Medan.

 

Keywords: Accidents, Traffic, POLRESTA Medan, data mining, a priori, k-means.

References

[1] Asroni, & Adrian, R. (2015). Penerapan Metode K-Means Untuk Clustering Mahasiswa Berdasarkan Nilai Akademik Dengan Weka Interface Studi Kasus Pada Jurusan Teknik Informatika UMM Magelang. JURNAL ILMIAH SEMESTA TEKNIKA Vol. 18, No. 1, 76-82.
[2] Baradwaj, B. B., & Pal, S. (2011). Mining Educational Data to Analyze Students' Performance. (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 2, No. 6.
[3]Buaton, R., & Nurhayati, F. (2017). Clutering Pelanggaran Berkendaraan Menggunakan Algoritma K-Means Pada Polres Binjai. STMIK KAPUTAMA.
[4]Garg, R., & Gulia, P. (2015). Comparative Study of Frequent Itemset Mining Algorithms Apriori and FP Growth. International Journal of Computer Applications (0975 - 8887), Volume 126 - No 4.
[5]Gupta, A., Bibhu, V., & Hussain, M. R. (2012). Security Measures in Data
[6]Mining. I.J. Information Engineering and Electronic Business, 2012, 3, 34-
[7]Hakim, L., & Fauzy, A. (2015). Penentuan Pola Hubungan Kecelakaan Lalu Lintas Menggunakan Metode Association Rules Dengan Algoritma Apriori (Studi Kasus : Tingkat Kecelakaan di Jalan Raya Kabupaten Sleman). University Research Colloquium 2015, ISSN 2407-9189.
[8] Kumar, B. S., & Rukmani, K. (2010). Implementation of Web Usage Mining Using APRIORI and FP Growth Algorithms. Int. J. of Advanced Networking and Applications, Volume:01, Issue:06, Pages: 400-404.
[9]Nurisnaini, M. P. (2014). Analisa Data Mining Menggunakan Algoritma Apriori Untuk Menentukan Relasi Pembelian Produk Pada Restoran Tengger Malang Brebes. Semarang: Universitas Dian Nuswantoro.

Downloads

Published

2019-01-01