PERBANDINGAN METODE EXTREME LEARNING MACHINE DAN BACKPROPAGATION UNTUK MENGKLASIFIKASI PHISING WEBSITES
Abstract
Situs web phishing merupakan salah satu jenis kejahatan elektronik yang terus berkembang secara pesat dan juga salah satu yang paling berbahaya, yang dapat memberikan dampak negatif yang sangat besar terhadap e-banking dan berbagai jenis bisnis online seperti e-commerce dan penyedia Software-as-a-Service (SaaS). Umumnya, jenis kejahatan ini dimulai dari pengiriman e-mail yang menyerupai e-mail yang dikirim oleh instansi resmi yang berisi informasi pemberitahuan kepada korban bahwa perlu dilakukan suatu pembaharuan atau verifikasi data yang disertai dengan link untuk menuju situs tersebut. Situs tersebut merupakan situs web palsu yang dibangun oleh pelaku kejahatan yang dimana menyamari dan menyerupai situs aslinya untuk mendapatkan informasi sensitif dan pribadi korban. Oleh karena itu, diperlukan suatu metode yang efektif untuk mendeteksi apakah suatu website termasuk kategori phishing atau tidak. Penelitian ini menyajikan metodologi pendeteksian phishing websites berbasis machine learning dengan menggunakan dan membandingkan metode Extreme Learning Machine (ELM) dan neural network dengan algoritma backpropagation. Extreme Learning Machine merupakan algoritma pembelajaran untuk feedforward neural networks dengan 1 lapisan tersembuyi yang secara acak menentukan bobot input dan output. Backpropagation merupakan algoritma pembelajaran neural networks yang melakukan penyesuaian bobot untuk mendapatkan hasil terbaik. Hasil penelitian menunjukkan metode backpropagation dalam mengklasifikasi phishing websites memberikan ketepatan klasifikasi sebesar 91.85% lebih besar dibanding dengan metode ELM dengan ketepatan klasifikasi 84.07%.
Published
Aug 30, 2019
How to Cite
S.KOM., MM, Okky P Barus; RONALDO, Ronaldo.
PERBANDINGAN METODE EXTREME LEARNING MACHINE DAN BACKPROPAGATION UNTUK MENGKLASIFIKASI PHISING WEBSITES.
Journal of Informatics Engineering Research and Technology, [S.l.], v. 1, n. 1, aug. 2019.
ISSN -.
Available at: <https://ejournal-medan.uph.edu/index.php/iert/article/view/309>. Date accessed: 28 may 2023.
Section
Articles
Penulis yang menerbitkan jurnal ini menyetujui persyaratan berikut:
- Penulis memiliki hak cipta dan memberikan hak untuk publikasi pertama jurnal dengan karya yang secara simultan dilisensikan di bawah Creative Commons Attribution License yang memungkinkan orang lain untuk berbagi karya dengan pengakuan kepengarangan karya dan publikasi awal dalam jurnal ini.
- Penulis dapat membuat perjanjian kontrak tambahan yang terpisah untuk distribusi non-eksklusif versi jurnal yang diterbitkan dari karya tersebut (misalnya, mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan atas publikasi awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk memposting karya mereka secara online (misalnya, dalam repositori institusional atau di situs web mereka) sebelum dan selama proses pengajuan, karena dapat menyebabkan pertukaran yang produktif, serta kutipan yang lebih awal dan lebih besar dari karya yang diterbitkan (Lihat Pengaruh Akses Terbuka).